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III. Project Abstract
In recent years, images have been used to solve Deep Reinforcement Learning (DRL) 
problems with promising results. Convolutional Neural Network (CNN) architecture has been
particularly successful in solving complex game environments, outperforming standard fully-
connected neural network layers (Mnih et al. 2015; Hasselt et al. 2016). However, Vision 
Transformer (ViT) architecture has been shown to provide even better results in various tasks
that were previously dominated by CNN (Han et al. 2023). ViT is a variant of the traditional 
Transformer architecture, which uses the self-attention mechanism to extract input features.

Although ViT and Transformer-based architectures are relatively new compared to CNN, 
ViT has not yet fully demonstrated its potential to replace CNN. This research aims to 
implement one of the recently introduced ViT models, the Swin Transformer (Liu et al. 
2021), as the main network backbone in the Double Deep Q Network (Double DQN), a well-
known DRL algorithm that typically uses CNN as its main backbone. Double DQN has been 
shown to perform well in Atari game environments. The aim of this research is to determine 
if a Vision Transformer can achieve good or even better results.

In this paper, standard techniques and technologies will be used to implement the Double 
DQN algorithm on Atari-based environments, using Gymnasium and PyTorch. The results 
will be compared with those of a recent paper that successfully used Swin Transformer as a 
replacement for CNN in the Double DQN algorithm (Meng et al. 2022).

The findings of this study show that although the Swin Transformer architecture performs 
well, the CNN architecture outperforms it, especially for a small number of training steps. 
CNN also requires less computing power and can work on older hardware while using a 
reasonable amount of memory, whereas Swin Transformer requires more data to be trained 
properly and a relatively recent GPU with sufficient VRAM to be trained in a reasonable 
amount of time. For Swin Transformer to outperforms CNN, the number of training steps 
should be pretty high.
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IV. Project Introduction and Research Question
Artificial Neural Networks (ANNs) have emerged as popular and effective models for 
classification, clustering, pattern recognition, and prediction in various disciplines (Abiodun 
et al. 2018), including video games (Skinner and Walmsley 2019). The present research 
focuses on the application of ANNs in computer games.

ANNs belong to the broader discipline of Machine Learning (Skinner and Walmsley 2019), 
which is a component of the Artificial Intelligence (AI) field. AI plays a pivotal role in the 
development of computer games, contributing to the realism and intelligence of the game 
world. The AI domain encompasses various fields, including Machine Learning and its 
subdiscipline, Reinforcement Learning.

There exist many types of artificial neural networks, which can be categorized into larger 
groups such as feedforward, regulatory feedback, recurrent neural network, modular, 
physical, dynamic, memory networks, hybrids, and others. This research paper mainly 
focuses on image recognition neural networks, which are part of feedforward and recurrent 
neural network models.

Applying neural network concepts to a video game opens up numerous possibilities 
compared to conventional AI algorithms, owing to their ability to mimic the biological neural
networks of human brains (Skinner and Walmsley 2019). However, game studios generally 
avoid using neural networks for their game, particularly for enemies, except in certain 
specific areas, as explained by Skarupke (2020), because of their uncertain behaviours. 
Nevertheless, the use of neural networks for video games is increasing, but determining 
which neural network model to use for specific needs can be challenging. It is difficult to find
literature that compares different types of neural networks with a focus on video game AIs, as
game studios tend to keep their work on neural networks confidential.

Standard Fully-connected Neural Networks have been utilized for various problems related to
video games (Mänttäri and Larsson 2011). Although fully-connected models are helpful for 
solving complex problems, they are less capable of easily performing image recognition 
(O’Shea and Nash 2015). For the specific task of recognizing images, other neural network 
models should be used. In computer games, image recognition can serve numerous purposes 
that regular densely-connected layers cannot address.

This paper focuses on the specific problems related to computer game image recognition that 
can be more easily solved by certain types of neural networks. Convolutional Neural 
Networks (CNNs) are one such model that focuses on pattern recognition in images. CNNs 
are analogous to traditional fully-connected networks and belong to the same category of 
feedforward model. CNNs are a well-established neural network that has been used 
extensively in games. One of the most famous examples is the use of CNN to play the game 
Go, which has remained a difficult challenge in the field of AI (Clark and Storkey 2015).

Although CNNs are well-used neural networks for image recognition, Transformers is also a 
good candidate. Originally designed for text-based tasks, the Vision Transformers model 
(ViT) can now be used to perform image-recognition tasks. Transformers is a novel neural 
network model that was initially introduced in 2017 and then adapted for tasks in Computer 
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Vision with the Vision Transformers model in 2020 by the Google Research Center (Houlsby
and Weissenborn 2020).

The present research aims to provide a fresh perspective on the usage of Convolutional 
Neural Networks and its modern alternative, Vision Transformers, in video game 
environments. The central research question that guides this investigation is: “What 
advantages does using a Vision Transformer model offer over CNN in playing video 
games?” To delve deeper into this research question, three sub-questions have been 
formulated, namely:

 How effective are CNNs in addressing computer vision challenges in video games?
 Which Vision Transformer architecture would be most effective in addressing 

computer vision problems in video games?
 What challenges are associated with training a neural network agent using Vision 

Transformers compared to CNNs?

To ensure a fair comparison of the neural networks, precise criteria must be used consistently 
throughout the experiments. This paper will also include tables and graphics displaying the 
data collected through the research.
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V. Literature Review

Artificial Intelligence
Artificial Intelligence (AI) refers to the ability of computers to execute human and animal-
like cognitive processes. This technology is primarily utilised to tackle complex problems 
that are beyond the capabilities of traditional computer algorithms, such as recognizing 
familiar faces, generating creative outputs, and conversing in natural languages (Millington 
2019). The implmentation of AI has revolutionised the field of gaming, with Atari being the 
first game studio to integrate AI technology into their games Pong and Space Invaders. 
Altough the intial systems were basic, this marked a significant milestone in the evolution of 
AI in gaming (Skinner and Walmsley 2019).

Neural Network
An Artificial Neural Network (ANN) is a computing system that attempts to replicate the 
learning process of biological animal brains. ANNs have become increasingly popular in 
recent years and have proven to be helpful models for classification, clustering, pattern 
recognition, and prediction in various disciplines.

Neural Networks (NNs) are a type of computational model that draws inspiration from 
biological neural networks. As a part of the Artificial Intelligence field, NNs are used to 
model decision-making systems and provide automated knowledge extraction with high 
inference accuracy. They were designed to address different aspects or elements of learning 
such as how to learn, induce, and deduce, allowing them to draw conclusions from case 
observations (Yang and Yang 2014).

The basic building blocks of a Neural Network are interconnected units or nodes called 
artificial neurons. These neurons mirror the neurons in a biological brain and are connected 
by edges, which are similar to synapses in the brain. Each neuron and edge has a weight that 
adjusts as learning progresses. Neurons transmit signals to other neurons using these edges, 
and the output of each neuron is calculated by a non-linear function of the sum of its input 
(Artificial neural network 2023).

Neural Networks are the core components used in Deep Learning, which is a subfield of 
Artificial Intelligence.

Deep Learning
Deep Learning is a sophisticated branch of machine learning that allows computers to solve 
intricate computational problems. Deep Learning models consist of several neural networks, 
or processing layers, that learn data representations and extract features from the data with 
multiple levels of abstraction. To uncover the complex structure in data, Deep Learning 
employs the backpropagation algorithm to guide the machine on how to modify its internal 
parameters that are utilized to compute the representation in each layer based on the 
representation in the preceding layer (LeCun et al. 2015).

As discussed in a blog post from Seldon (Supervised vs Unsupervised Learning Explained 
2022), Artificial Intelligence and Machine Learning can be classified into two categories: 
supervised and unsupervised learning. Supervised learning is when both the input and output 
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data are labeled and known. In other words, the labeled dataset is given as input and output to
the machine learning algorithm during the training phase. Once the machine learning model 
has learned the relationship between the input and output data, it can be employed to classify 
new datasets and predict outcomes. On the other hand, unsupervised learning involves 
training models on unlabelled and raw data. In unsupervised learning, the human does not 
need to classify the dataset beforehand. This technique is used to identify patterns and trends 
in raw datasets or group similar data together. Unsupervised learning requires additional 
consideration to explain its output. Reinforcement Learning, a third category for Machine 
Learning, will be discussed in more detail in a subsequent paragraph.

To summarize, supervised machine learning discovers the relationship between input and 
output through labeled training data, which can then be utilized to classify new data by 
leveraging learned patterns or in predicting outputs. Conversely, unsupervised learning is 
advantageous in identifying underlying patterns and relationships within unlabelled and raw 
datasets.

Reinforcement Learning
Reinforcement Learning (RL) differs from Supervised and Unsupervised Learning, as it 
involves an AI agent learning by trial-and-error, using the “law-of-effect” tradition from 
psychology and other mechanisms from various fields of biology and psychology (Gallistel 
1999). The fundamental idea behind RL is that agents learn to take actions that maximize a 
reward signal provided by the environment by exploring and exploiting the available options. 
The learner, or Agent, is not explicitly told which actions to take and has no prior knowledge 
of the environment. Instead, it must discover which actions give the most reward through 
trial-and-error. The challenge in RL arises from the fact that actions not only affect the 
immediate reward received but also subsequent actions and rewards (Sutton and Barto 2018). 
RL models the problem it attempts to solve as a Markov Decision Process (Puterman 1990) 
and commonly uses the Bellman equation in its algorithms to determine whether the goal has 
been achieved. The Bellman equation approximates a value function, estimating how good it 
is for the agent to be in a given state or perform a given action in a given state (O’Donoghue 
et al. n.d.).

RL has been the subject of extensive research due to its generality and has been applied in 
various fields, such as Game Theory, Multi-agent Reinforcement Learning (Nowé et al. 2012,
chap.14), Control Theory (Gullapalli 1992), Economics and Finance (Charpentier et al. 
2021), among others. This paper focuses on the use of RL in video games.

A range of methods and algorithms have been developed to solve RL problems, which can be
broadly classified into two categories: model-based and model-free (Sutton and Barto 2018). 
Model-based algorithms learn a model of the environment dynamics and use it to plan 
actions, while model-free algorithms directly learn the optimal policy by interacting with the 
environment. Popular algorithms in this category include Q-learning, SARSA, and policy 
gradient methods (Sutton and Barto 2018).

Deep Reinforcement Learning (DRL) is a recent development in RL that combines Deep 
Learning with RL, enabling agents to learn from high-dimensional sensory inputs, such as 
images (Mnih et al. 2015), and generalize well on any types of data.
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RL has gained popularity in recent years, with numerous applications in real-world scenarios.
However, it faces challenges such as sample inefficiency, instability, and exploration-
exploitation trade-off. Ongoing research in RL aims to address these challenges and develop 
more robust and efficient RL algorithms.

Q-Learning
Q-Learning is a reinforcement learning algorithm that facilitates an AI agent's ability to 
determine the optimal action in a Markov Decision Process environment (Watkins and Dayan
1992). It is a dynamic programming approach that improves its assessment of the best course 
of action in a given state through successive iterations. The Q function is central to the Q-
Learning algorithm, as it estimates the expected cumulative reward achievable by an agent 
through a specific policy in a given state, taking a particular action. In the traditional Q-
Learning algorithm, this Q function is stored as a table referred to as the Q-table.

Q-learning has several advantages, such as its ability to learn from experience without 
requiring a model of the environment. This makes Q-learning applicable to a wide range of 
problems where the dynamics of the environment are unknown or too complex to model 
accurately. Furthermore, Q-learning is flexible and can adapt to different problem settings, 
including online and offline learning, single-agent and multi-agent settings, and continuous 
and discrete action spaces (Brafman and Tennenholtz 2002; Sutton and Barto 2018). 
However, Q-learning also has limitations, such as the challenge of balancing exploration 
versus exploitation. Finding the right balance between exploration and exploitation is crucial 
for Q-learning, as exploration is necessary for the agent to learn the optimal policy, while 
exploitation is necessary to maximize rewards.

Deep Q-learning Network (DQN) is a variant of Q-learning that uses a deep neural network 
to approximate the Q-function instead of using a table. The combination of Q-learning and 
deep neural networks has led to significant breakthroughs in various domains, such as game 
playing, robotics, and autonomous driving (Bojarski et al. 2016; Mnih et al. 2015; Silver et al.
2016). The DQN algorithm addresses the instability issues of the standard algorithm by using
an experience replay to store the previous experience of the agent's actions.

Double Deep Q-learning Network (DDQN) is an improvement on top of DQN that aims to 
overcome the overestimation issue of Q-learning. Q-learning suffers from overestimation 
because the max operator used in standard Q-learning and DQN uses the same value to select 
and evaluate an action. This instability can lead to suboptimal performance  (Hasselt et al. 
2016). DDQN addresses this issue by using two Q-functions or two Q-networks in the case of
deep Q-learning. The two functions are learned by assigning experiences randomly to update 
one of the two Q-functions. One Q-function determines the greedy policy, and the other Q-
function determines its value. In Deep Q Network, the standard way of achieving this is by 
keeping a copy of the policy network called the target network. The weights of the target 
network are updated regularly with those of the policy network.

In this project, Double DQN was specifically used due to its relatively simple algorithm and 
ease of use.
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Deep Learning and video games
Zahedi  (1991) posits that Artificial Intelligence and neural networks share a common goal of
simulating convincing human intelligence. However, Zahedi's claim that AI and neural 
networks are distinct is erroneous, neural networks are a subpart AI. Rule-based AI, including
expert systems, assumes the brain is a black box and attempts to replicate human reasoning as
a series of explicit algorithms. In contrast, neural networks treat the brain as a white box and 
model its internal structure and function by representing knowledge implicitly through nodes 
and edges. Neural networks use inductive reasoning to process knowledge, and learning 
occurs within the system, similar to the way an animal brain learns. Both rule-based AI and 
neural networks can be used to address AI problems in video games, but they employ 
different approaches. Rule-based AI relies on external knowledge stored explicitly in the 
algorithm, whereas neural networks attempt to mimic the human brain to learn autonomously,
with knowledge hidden in its hidden layers. Because neural networks have a greater capacity 
to replicate the workings of the human brain (Skinner and Walmsley 2019) they are 
particularly suitable for video games where rule-based AI algorithms would be inadequate. 
The choice of approach depends on the specific application and desired fidelity to reality and 
performance.

Neural networks are increasingly utilized in video games for controlling game agents, which 
may include non-player characters or represent the game environment itself (Qualls and 
David 2009). The scope of neural network application in video games is broad, as they can 
control a single agent or multiple agents, and represent various facets of the game. One 
commonly applied function of neural networks in video games is path navigation, where a 
neural-based agent adapts to the ever-changing game environment. Neural networks can be 
used to create a dynamic gameplay experience, where the game becomes progressively more 
challenging over time. Additionally, neural networks can be used to control the game 
ecology, to populate and mutate the environment based on player actions, for instance, by 
making animals more friendly or hostile. Another application is for creating realistic game 
animations. As computer games become more powerful, animations need to be increasingly 
lifelike. A neural network can teach an animal character how to walk on various surfaces and 
environments, allowing the character to adapt its movements to different terrains, such as 
mountains or flat plains.

A study by the laboratory of Professor of Psychology John O'Doherty at Caltech found that 
artificial neural networks exhibit similar behavior to the human brain while playing video 
games (Dajose 2021). This discovery is significant because it could aid our understanding of 
how the brain solves difficult problems, and in turn, help guide the development of more 
intelligent and human-like AI algorithms for video games.

To provide a concrete example of neural networks in video games, we can look at “Colin 
McRae's Rally 2”, a racing game developed by Codemasters that simulates rally races. To 
control the opponent cars in the game, Codemasters developers used neural networks trained 
using various techniques. Jeff Hannan, a developer at Codemasters, explained in an interview
the techniques employed to develop the neural network used in the game (Hannan n.d.). To 
train the neural network, developers played the game and recorded their laps around the 
racetracks, capturing data on drivers' reactions to other cars and their average driving line. 
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This data was then used in supervised learning to train the neural network, which was 
subsequently integrated into the final game.

Types of neural network
The present research project aims to utilize images for training an agent to play games 
effectively. In this context, two prominent models of neural networks have been identified, 
namely the Convolutional Neural Network and the Vision Transformer (O’Shea and Nash 
2015; Dosovitskiy et al. 2021).

Convolutional Neural Network

Convolutional Neural Network (CNN) is a type of neural network that is primarily used in 
image recognition (O’Shea and Nash 2015, p.2). Like traditional NNs, they are comprised of 
neurons that self-optimise through learning. Neurons receive input and perform operations 
(such as a scalar product followed by a non-linear function) – the basis of every ANNs. As 
stated by O’Shea and Nash, the only notable difference between CNNs and fully-connected 
NNs is that they are primarily used in the field of pattern recognition within images. In other 
words, to be able to know what the different “objects” are composing an image. CNNs can 
take image-specific features as input, which is why CNN is more suitable for image-focused 
tasks because fewer parameters are needed to set up the model.

Using traditional neural networks for image recognition poses a significant challenge due to 
the computational complexity required to compute image data, particularly as the number of 
pixels composing an image increases. For example, a 28×28 black-and-white image can be 
easily stored in a single neuron, containing 784 weights. However, for video games, 
rendering more pixels and accounting for colors increases the information required for 
recognition, making it impractical for fully-connected layers to perform this task (O’Shea and
Nash 2015, p.3).

Transformer
The Transformer is a deep-learning model that employs the self-attention mechanism and has
gained popularity for natural language processing tasks, including language translation and 
sentiment analysis.

Attention is a cognitive process that enables individuals to focus actively on specific 
information, while ignoring other details (James 1890). In machine learning, attention is a 
technique that seeks to emulate cognitive attention in humans. The Transformer model 
architecture relies solely on the attention mechanism to capture global dependencies between 
input and output (Vaswani et al. 2017).

The Transformer architecture adopts the encoder-decoder structure of neural sequence 
transduction models (Sutskever et al. 2014; Cho et al. 2014; Bahdanau et al. 2016), 
comprising self-attention and fully connected layers.

Vision Transformer
The Vision Transformer (ViT) is a neural network model inspired by the success of the 
Transformer architecture in natural language processing. Instead of processing a sequence of 
text, the ViT directly processes images by splitting them into fixed-size patches and 
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providing a sequence of linear embeddings of these patches as input to a Transformer. 
Similar to the tokenization of words in a standard NLP Transformer, patches are treated as 
tokens (Dosovitskiy et al. 2021).

While convolutional neural networks have traditionally been the most commonly used 
architecture for image recognition tasks, the trend is shifting towards the use of Vision 
Transformers as a replacement for standard CNNs. ViTs have shown superior performance in
image classification tasks, given that the training dataset is sufficiently large (Zhao et al. 
2021).

However, the use of ViT for Deep Reinforcement Learning remains rare due to the 
significant amount of data required for training. A recent study compared a pre-trained ViT, 
trained using self-supervised learning, with RAD, a leading CNN-based RL method. The 
study found that RAD still outperformed ViT (Tao et al. 2022). Training ViTs remains a 
difficult and costly task due to its quadratic complexity relative to the input image size.

Recent Transformer architectures have been adapted to directly solve Reinforcement 
Learning problems, such as Decision Transformer or Trajectory Transformer. These 
adaptations have shown promising results, but they require significant modifications to 
existing RL algorithms and may be more complex to use and understand. Additionally, these 
adaptations do not work as effectively with online RL (Chen et al. 2021; Janner et al. 2021).

Swin Transformer
The Swin Transformer is an advanced model designed to enhance the standard ViT 
architecture by addressing limitations of existing Transformer-based models used for vision 
applications. While standard Vision Transformer pose challenges and require changes in the 
underlying RL algorithm to replace CNN, the Swin Transformer can be a valuable solution. 
This model aims to build hierarchical feature maps by merging image patches in deeper 
layers, which ensures linear computation complexity to input image size. In contrast, 
previous ViT suffers from quadratic computation complexity due to computing self-attention 
globally, resulting in a single low-resolution feature map (Liu et al. 2021). Consequently, the 
Swin Transformer is emerging as a general-purpose backbone for computer vision, 
comparable to CNN.

Thus, the Swin Transformer is an excellent candidate to replace the CNN algorithm in Deep 
Reinforcement Learning algorithms, given that CNN is already considered a good general 
backbone for almost every task involving computer vision. Recently, the Swin Transformer 
was tested on solving Atari game environments with the Double DQN algorithm, where the 
Q network was replaced from the CNN to the Swin Transformer architecture (Meng et al. 
2022). The authors compared their results with those of the 49 Atari games, and their findings
were quite intriguing. As the paper is recent, no one has attempted to replicate this 
experiment yet (as far as I am aware). The results of this study show that the Swin 
Transformer can achieve significantly higher evaluation scores across most tested Atari 
games. I plan to conduct my own experiment to compare their results with mines.
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VI. Methodology

Technologies
In order to ensure a fair and unbiased comparison, state-of-the-art software libraries and 
frameworks were used for this project. All tools utilized were open source and widely 
recognized in the research community.

Python was chosen as the programming language due to its popularity and the extensive 
range of machine learning libraries and frameworks available. Two of the most widely used 
deep learning frameworks, TensorFlow and PyTorch, were initially considered. TensorFlow 
was used at the beginning of the project, but issues encountered led to a switch to PyTorch 
towards the end of the project. Both frameworks provide a vast ecosystem and utilities for 
deep learning, with a large community of researchers utilizing them in their work (Martín 
Abadi et al. 2015; Paszke et al. 2019).

For the environment to train the agent, Gymnasium, a Python library was used. Formerly 
known as Gym and developed by OpenAI, Gymnasium is now managed by the Farama 
foundation (Farama Foundation 2022). Gymnasium offers a wide range of different 
environments representing general reinforcement learning problems. It features an API 
specifically designed for solving reinforcement learning problems using any kind of methods.

To ensure the reliability of the implementation of the Deep Q-Learning algorithm, the Stable 
Baselines3 library was utilized. This library features a set of reliable implementations of 
reinforcement learning algorithms in PyTorch (Raffin et al. 2021). Although the data 
generated by this library was not used to compare the neural networks, it was used as a 
reference point to validate the correctness of my algorithm implementation.

Method
As detailed in the literature review, the present study sought to replicate the approach of 
Meng et al. (2022), which entailed employing the Double DQN algorithm in conjunction with
a Convolutional Neural Network, and subsequently replacing the CNN with a Swin 
Transformer. For each experiment, identical algorithmic and hyperparameter settings were 
employed.
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Initialize replay memory D to capacity N
Initialize action-value function Q with random weightsθ
Initialize target action-value functionQ̂with weightsθ̂=θ
For t = 1 to T do
   Reset the environment
   while game not done do
      t += 1
      if random(0,1) <ϵgreedy do
         Select a random actiona
      else
         Select an action through policy networka=a r g ma x (Q (s , a ;θ ) )
      end if

      Execute actiona
      Store( s , a , s ′ ,r , d one )into replay buffer D
      Sample random minibatch of( s , a , s ′ ,r , d o ne )from D

      if t % train_frequency = 0:
             target=r+( s ' , a ;θ )∗ (1− done )
         Compute loss L (Q ( s , a ;θ ) , t a r g e t )
         UpdateQ (s , a;θ )by lossLwith gradient descent
      end if
   end while

   ift %target_update_interval=0:
      UpdateQ̂withθ̂=θ
   end if

end for

Algorithm 1: Double Deep Q Network (Pseudocode)

Table 1: Algorithm parameters definition

Symbol Type Definition
(s, a; ) and (s, a; ) Q Network Policy and target networks with their weights

D and N List, int Store experience in a list of size N

train_frequency int The frequency to which perform a gradient descent 
step to update the policy Q-Network (s, a; ).

target_update_interval int The interval to synchronise the target network with 
the policy network

t int The current timestep. 1 timestep = 4 frames

s and s’ (84, 84, 4) Current and next environement state stored as 4 
stacked and grayscaled image frames.

a, r, done int, int, bool Action, reward and terminal state
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Table 2: Parameters used in Double DQN

Input 4×84×84

Optimizer Adam

Adam learning rate 0.0001

Loss function Smooth L1

Max timesteps 10,000,000

Target update interval 1,000

Learning starts 100,000

Train frequency 4

Replay buffer size 10,000

Batch size 32

Discount rate γ 0.99

Exploration fraction 0.1

Final exploration rate ε 0.01

The input to both the CNN and Swin Transformer networks is a stack of four grayscale 
frames reduced to a size of 84×84. The CNN architecture is based on the one used by Mnih et
al. (2015) in their Nature paper on DQN, which includes a 32-filter convolutional layer with 
8×8 filters and stride 4, a 64-filter convolutional layer with 4×4 filters and stride 2, a 64-filter 
convolutional layer with 3×3 filters and stride 1, a fully-connected hidden layer with 512 
units, and a fully-connected linear output layer with a single output for each valid action in 
the environment.

13
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For the Swin Transformer architecture, the complexity of the model makes finding good 
parameters challenging. The architecture used in this project was adapted from Meng et al. 
(2022) and includes three layers of Swin Blocks, each containing 2, 3, and 2 blocks and 3, 3, 
and 6 attention heads, respectively. The patch size is set to 3×3, which yields 28×28 patches 
given the input size of 84×84 for the four channels. The embedding dimension for each patch 
is 96, resulting in a token size of 784×96 after patch embedding. The local window size is 
7×7 and the windows are shifted by 3 patches for the first and third blocks. The MLP ratio is 
4, indicating that the linear layers within Swin Blocks have 4 times the embedding dimension
hidden units, i.e., 384. The drop path rate is set to 0.1, indicating a 10% chance that the input 
is kept as it is in skip connections (Meng et al. 2022).

Table 3 and 4 summarize the parameters for both networks.

Table 3: Parameters for the CNN network

Layers 3

Filters each layer 32, 64, 64

Strides each layer 4, 2, 1

Kernel size each layer 8, 4, 3

MLP units 64×7×7 = 512

Table 4: Parameters for the Swin network

Layers 3

Blocks each layer 2, 3, 2

Heads each layer 3, 3, 6

Patch size 3×3

Window size 7×7

Embedding dimension 96

MLP ratio 4

Drop path rate 0.1
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Figure 2: Structure of the Swin DQN



VII. Evaluation and Discussion
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As anticipated, the CNN architecture produced favorable results, with the agent achieving 
good performance. The CNN agent employed in this study required a relatively short training
time of 7 hours and 36 minutes on a GTX 970 GPU, thereby demonstrating its efficacy. The 
computational resource constraints did not significantly impact the agent's ability to learn to 
play Pong. The agent began to converge around 500,000 steps, with a stable increase until it 
reached 3.5 million steps, where it stabilized. The training curve showed a linear increase 
with no significant dropouts, even after hours of training. However, the agent did not achieve 
a mean reward of +/- 20 (21 being the max score). This outcome might be attributed to the 
selection of the environment seed, which was 42 in this case.

In comparison to Swin, the CNN agent showed a lower amount of loss spikes as training 
progressed, indicating a quicker learning process with fewer mistakes. The agent's ability to 
learn from the environment and improve its performance is a key characteristic of the CNN 
architecture, and it has proven to be a powerful tool also in this case.

The Swin Transformer-based DQN agent required a substantially longer training period of 3 
days and 7 hours on an RTX 3080 GPU. While the CNN model stabilized at 3.5 million steps
with a mean reward of +/- 13, the Swin DQN model was still scoring in the negative at this 
point. Although the Swin DQN model only began to score positively at around 4 million 
steps, it showed a constant increase in performance compared to the CNN model, which 
stabilized for most of its training duration. However, Swin Transformer was not able to 
achieve the same mean reward as the CNN model, achieving only around ~12. Another 
interesting result, is that the CNN agent stayed stable, with no major dropout, while the Swin 
Agent results are very extremes, giving sometimes a few better result than DQN, and 
sometimes a completely worse result, with an episodic return of almost -21, even at the end 
of training. However, we can still see an evolution overhaul, with less big spikes at the end.

The performance curve for the Swin Transformer-based DQN model was less linear, 
exhibiting consistent drops to lower scores for a certain period before increasing again. The 
loss evolution during training was somewhat erratic, with significant spikes even near the end
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of training. This behavior was not unexpected, given that the Transformer architecture 
requires more data to be trained effectively.

An interesting comparison can be made between CNN and Swin, by observing the agents 
playing directly. The agent trained with CNN took actions in an erratic manner, whereas the 
Swin Transformer appeared to be smoother, despite its lower mean reward. This behavior is 
critical in video games since the smoother it is, the more appealing it will be to a human 
player. A compelling video comparing the two networks on Pong can be found at 
https://youtu.be/2WXqowueAFE. The video gives the impression that the Swin DQN agent 
thinks more before taking an action than the CNN agent.
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The CNN agent was trained for 1 day and 7 hours on an NVIDIA GTX 970 GPU, while the 
Swin agent required a significantly longer training period of 3 days and 6 hours on an 
NVIDIA RTX 3080 GPU. Interestingly, the Swin Breakout agent required less time to train 
than the Swin Pong agent, while the CNN Breakout agent required more time than the CNN 
Pong agent, despite being trained on the same hardware and under the same conditions. The 
reasons for these results are not immediately clear and may be due to random factors rather 
than the neural networks themselves.

In terms of performance, the CNN agent outperformed the Swin agent in Breakout, achieving
a mean reward of almost 50 and a better episodic return overhaul, while the Swin DQN agent 
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occasionally performed better for a few episodes. Overall, the Swin agent's performance was 
worse than Pong, with a mean reward that was more than double that of the CNN agent. The 
convergence point for both agents started early in training, before 1 million steps. These 
results suggest that Breakout requires more than 10 million steps for proper training, although
the CNN agent was able to achieve better results in less time.

Compared to Meng et al. (2022), my results on Breakout show lower scores for the first 10 
million steps. This difference may be due to random factors or the choice of seed. In their 
paper, Swin DQN and CNN DQN achieved relatively similar results, which became sparser 
closer to 2 million steps. This suggests that the Swin agent requires more time and data to 
achieve optimal performance compared to the CNN agent.
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VIII. Project Milestones
As a research-focused project, hard deadlines were not set for completing specific features, 
though general goals were established throughout the sprints and adjusted as needed based on
progress and difficulties encountered. At the outset, the primary goal was to gain a 
comprehensive understanding of machine learning, given my limited knowledge in the field 
at the time. A significant amount of time was allocated to preparing a literature review by 
reviewing relevant papers to the field, which was necessary before delving into the practical 
aspects of the project.

After the initial research phase, a schedule was devised to set general goals for each sprint. 
However, it turned out to be a completely unrealistic schedule as the amount of work required
to reach certain goals was underestimated. A considerable portion of the time was spent 
experimenting, with many unsuccessful attempts at making some experiments work.

The second sprint began at the end of November, during which time I researched the 
necessary technology stack required to develop the project. Simple examples were 
implemented to gain proficiency in the use of these technologies. During this sprint, I faced 
challenges in properly installing all the required tools, and I had to experiment with various 
methods before finally arriving at a working environment.

After the second sprint, I faced a significant roadblock when trying to understand and 
implement the algorithms necessary to complete the project. However, with perseverance, I 
successfully implemented my first experimentation of the DQN algorithm using TensorFlow.

During the last sprint, I was able to overcome most of the challenges encountered in the 
previous sprints and was finally able to perform the experiments I had planned. Looking 
back, I do not believe that focusing more on scheduling would have helped as the difficulties 
encountered would have made following the schedule challenging. However, I would have 
changed the approach taken to better learn the subject.
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IX. Major Technical Achievements
At the beginning of this research project, I initially attempted to work on a conventional 
Windows OS machine. However, I quickly discovered that this was not the optimal choice 
due to the limited support for many of the libraries required for the project. Consequently, I 
exclusively employed a Linux operating system, Altough I already used Linux in the past, I 
had not used it as a primary work OS. This required me to adapt to a new environment and to 
employ novel, open-source, and less data-intrusive applications developed by the open-source
community. Ultimately, I found a range of impressive alternatives to standard software used 
by large companies, and I will likely continue to use them and Linux as my primary work 
OS.

The field of AI and machine learning research is highly collaborative, with many experts 
sharing their work and creating useful libraries to facilitate further research without having to 
reinvent the wheel for every project. This has resulted in the creation of numerous open-
source libraries such as TensorFlow, PyTorch, Gymnasium, and Stable Baselines3. 
Consequently, my project predominantly utilized open-source software, which I believe is the
optimal approach for most AI development. This experience demonstrated a novel 
perspective on a more open-minded software development process, and I believe that further 
emphasis on open-source software development will greatly benefit research in this area.

For me, completing an open-source project and working with open-source pieces of software 
is a significant accomplishment, as it allows me to openly share my work and the software 
utilized in it.

The development of machine learning algorithms is more complex than developing 
conventional applications. In standard application development, one cancode, compile, test, 
and fix issues as needed. In contrast, with my project, assessing whether something is 
functioning appropriately could require waiting for several hours or even days. Therefore, 
implementing these algorithms is a significant achievement due to the time and difficulty 
required to achieve satisfactory results. I take pride in having been able to implement these 
machine learning algorithms in my project.
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X. Project Review
Although there was potential for the project to explore more extensive experiments, such as 
testing other Vision Transformer architectures or implementing the Swin Transformer v2, the
final outcomes were still promising. The results obtained were particularly intriguing in 
comparison to the research paper utilized as a reference to guide the implementation of the 
algorithms (Meng et al. 2022).

The greatest challenge was in developing an effective implementation of the DQN algorithm, 
especially given the limitations of my conventional gaming laptop with only a mid-range 
GPU. Initially, I had chosen to use TensorFlow as the machine learning framework, 
following the advice of my supervisor. However, a month before the final deadline, I 
switched to PyTorch. I encountered numerous issues with TensorFlow, primarily the library's
high default VRAM usage even for simple model architectures. Additionally, writing and 
optimizing a TensorFlow-based application required cumbersome boilerplate code, which 
caused confusion. Moreover, finding pre-existing library and model architecture 
implementations in TensorFlow proved challenging, as many new architectures are 
implemented in PyTorch. For example, the official implementation of the Swin Transformer 
is in PyTorch, and popular Reinforcement Learning libraries like Stable Baselines3 are also 
in PyTorch. When attempting to use the Swin Transformer, I had to find a reliable, non-
official implementation of it in TensorFlow, which I was unable to run on my laptop GPU (a 
GTX 1660 Ti).

Ultimately, I found it more straightforward to switch my scripts from TensorFlow to 
PyTorch. Prototyping algorithms became much more accessible with PyTorch, and the 
default VRAM usage was reasonable. I did not encounter any issues with resource depletion, 
even on my laptop. Additionally, I found that algorithms written in PyTorch are more 
readable than those in TensorFlow. While TensorFlow can be quicker than PyTorch, it 
requires more effort and time to tailor it to the project's needs.

In implementing the Double Deep Q Network algorithm, the option of utilizing a pre-existing
implementation from a Reinforcement Learning framework was available. However, due to 
its inclusion in the scope of the project, the decision was made to develop my own 
implementation. However, as a non-expert in the field, it was important to ensure the validity 
of the implemented algorithm and avoid comparison inaccuracies caused by errors in the 
code. Consequently, the Stable Baselines3 DQN implementation was used to confirm the 
accuracy of my DDQN algorithm. Through this process, the confidence in the correctness of 
the implemented algorithm was established, ensuring the validity of subsequent comparisons.

Python was chosen as the programming language for its comprehensive libraries and user-
friendly syntax in comparison to languages like C# or C++. It is noteworthy that almost all 
the algorithms utilized in this study are written in Python. The technologies employed in this 
project, except for TensorFlow, were suitable for the task and allowed the focus to remain on 
the comparison aspect. The choice of utilizing these technologies prevented the need to create
new libraries like Gymnasium, which would have been challenging to implement and time-
consuming.
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For individuals pursuing a similar project, it is highly recommended that they carefully read 
and comprehend the research paper which first introduced the algorithm utilized. 
Additionally, it is advisable to attend high-quality, current practical courses on reinforcement 
learning to ensure adequate preparation for the project.

23



XI. Conclusions
The primary objective of this project was to compare the performance of a Vision 
Transformer variant with its CNN counterpart using the Deep Q Network (DQN) algorithm, a
widely recognized Reinforcement Learning (RL) algorithm. However, during the research 
phase, a paper titled “Deep Reinforcement Learning with Swin Transformer” (Meng et al. 
2022) was encountered, which had already replaced the CNN with the Swin Transformer 
model. Despite this, the idea of replicating their work and comparing my results with theirs 
remained intriguing, especially given my limited knowledge of hyperparameter tuning if I 
were to try a completely different architecture.

The conclusion of the Meng et al. paper showed that the Swin DQN outperformed its CNN 
counterpart. However, my results indicated that the CNN outperformed the Swin DQN in the 
two tested games, Pong and Breakout. Despite this, the results were still significant and 
interesting compared to the paper, indicating that the Swin Transformer's computational 
complexity and time requirements for training an agent are higher than those of the CNN. 
The higher results obtained by Meng et al. (2022) demonstrate that the Swin Transformer 
requires a significantly higher number of training steps.

Training an agent with Swin Transformer is computationally intensive and requires 
significant GPU memory, making it challenging for an average computer and not feasible for 
consumer video games due to the low number of individuals who own such hardware. 
Therefore, the CNN remains a viable option for high-performance algorithms, considering 
the hardware of the end-user machine.

Despite this, the Swin Transformer offers certain advantages over the CNN that are not 
related to raw performance. A fascinating comparison can be made between the CNN and 
Swin by observing the agents playing directly. The agent trained with CNN took actions in an
erratic manner, whereas the Swin Transformer appeared to be smoother, despite its lower 
mean reward. This behavior is critical in video games since the smoother it is, the more 
appealing it will be to a human player.

24



XII. Future Work
This project has explored the comparison of a Vision Transformer variant to its CNN 
counterpart using the Deep Q Network algorithm. However, there are several avenues for 
future research that can build upon this work.

Firstly, while this project focused on the Swin Transformer model, there are several 
variations of the original ViT model that could yield interesting results. Thus, it would be 
valuable to compare and evaluate the performance of different Vision Transformer models.

Moreover, the recent introduction of the Swin Transformer v2 architecture presents a natural 
progression for this project. It would be worthwhile to explore this improved version and 
investigate its benefits compared to the original Swin Transformer model.

Additionally, this study could extend its investigation to other offline or online Deep 
Reinforcement Learning algorithms beyond DQN. Different algorithms such as A2C, DDPG,
HER, PPO, SAC, TD3, have unique strengths and weaknesses and could benefit from a 
change in their network backbone (Mnih et al. 2016; Lillicrap et al. 2019; Andrychowicz et 
al. 2018; Schulman et al. 2017; Haarnoja et al. 2018; Fujimoto et al. 2018).

The findings of this project suggest that the CNN remains a viable option for high-
performance algorithms in video games. However, exploring the benefits of newer and 
different architectures can contribute to the ongoing development of efficient and effective 
Deep Reinforcement Learning algorithms.
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